The 25 October 2010 Mentawai tsunami earthquake ( Mw 7 . 8 ) and the tsunami hazard presented by shallow megathrust ruptures
نویسندگان
چکیده
[1] The 25 October 2010 Mentawai, Indonesia earthquake (Mw 7.8) ruptured the shallow portion of the subduction zone seaward of the Mentawai islands, off‐shore of Sumatra, generating 3 to 9 m tsunami run‐up along southwestern coasts of the Pagai Islands that took at least 431 lives. Analyses of teleseismic P, SH and Rayleigh waves for finite‐fault source rupture characteristics indicate ∼90 s rupture duration with a low rupture velocity of ∼1.5 km/s on the 10° dipping megathrust, with total slip of 2–4 m over an ∼100 km long source region. The seismic moment‐scaled energy release is 1.4 × 10, lower than 2.4 × 10 found for the 17 July 2006 Java tsunami earthquake (Mw 7.8). The Mentawai event ruptured up‐dip of the slip region of the 12 September 2007 Kepulauan earthquake (Mw 7.9), and together with the 4 January 1907 (M 7.6) tsunami earthquake located seaward of Simeulue Island to the northwest along the arc, demonstrates the significant tsunami generation potential for shallow megathrust ruptures in regions up‐dip of great underthrusting events in Indonesia and elsewhere. Citation: Lay, T., C. J. Ammon, H. Kanamori, Y. Yamazaki, K. F. Cheung, and A. R. Hutko (2011), The 25 October 2010Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures, Geophys. Res. Lett., 38, L06302, doi:10.1029/2010GL046552.
منابع مشابه
Introduction to the Special Issue on the 2011 Tohoku Earthquake and Tsunami
The 11 March 2011 Tohoku earthquake (05:46:24 UTC) involved a massive rupture of the plate-boundary fault along which the Pacific plate thrusts under northeastern Honshu, Japan. It was the fourth-largest recorded earthquake, with seismic-moment estimates of 3–5 × 10 N·m (Mw 9.0). The event produced widespread strong ground shaking in northern Honshu; in some locations ground accelerations excee...
متن کاملSplay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress
The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults across the zone, which may ...
متن کاملValidation of linearity assumptions for using tsunami waveforms in joint inversion of kinematic rupture models: Application to the 2010 Mentawai Mw 7.8 tsunami earthquake
Tsunami observations have particular importance for resolving shallow offshore slip in finite-fault rupture model inversions for large subduction zone earthquakes. However, validations of amplitude linearity and choice of subfault discretization of tsunami Green’s functions are essential when inverting tsunami waveforms. We explore such validations using four tsunami recordings of the 25 Octobe...
متن کاملAn ancient shallow slip event on the Mentawai segment of the Sunda megathrust, Sumatra
[1] The outer-arc islands of western Sumatra rise during great megathrust earthquakes, due to large slip on the underlying megathrust. In contrast, the islands subsided up to a few centimeters during the recent tsunamigenic earthquake of October 2010, due to slip far updip, near the trench. Coral microatolls on one of the islands recorded a much larger subsidence, at least 35 cm, during an even...
متن کاملDepth-varying rupture properties of subduction zone megathrust faults
[1] Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (Mw 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (Mw 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the dee...
متن کامل